BIND 10 command tool concepts
Overview

DNS server management has traditionally been a challenge. This stems from a number of well known issues:

· DNS looks relatively simple but has a significant number of subtleties

· DNS is an accretive system that began in the early 80s. It has stretched far beyond the scale and scope of the original design

· Many more administrators run nameservers than are skilled at initial design or operation
· There are few “best practices” for namespace design and nameserver operation

· For many nameserver administrators, this is an infrequent task with a restart cost for each task

These issues are challenging and various tools have taken various approaches to attack the problems. The most common approaches have been to simplify the rote work, provide interfaces that are easier to use and provide fixed levels of best practice support/enforcement.
In BIND 10, an added set of problems are created for the command tool. Because of the extensible capabilities being built into the core of the server design, the tool must be able to expand to support capabilities and data types that do not exist yet and may well be used in only a very few nameservers anywhere. This ability to map new data and control structures, expose them in a rational form to the user and allow them to manipulate these structures is quite challenging.
This need to map, expose and control new structures also opens a new and critical door. It allows us to examine the logical data structures that follow from the DNS RFCs and decide whether they lead us to the best command and control approach. I believe the simple answer is that they don’t and those data structures were never designed for management.
Bind10 modularity, extensibility and its impact on a command tool
One of the fundamental commandments of BIND 10 is that it should be modular and extensible. This puts demanding constraints on many facets of the system design. Its impact on the command tool is quite large. In particular, the command tool can at no time make the assumption that what we need to expose is what the developers have built. This is simply because any of these components can be replaced and/or new ones added at the choice of a given installation’s administrators. This means the object model of the command tool cannot simply follow the design of the ISC modules and must instead support the breadth of possibilities in its design.

In we take the mantra of no recompiles needed when replacing a model, we need to address how the command tool can also be expanded and modified without recompiling. If someone creates a new auth model that includes a new RR type of “wombat” or “RFID”, how does the command tool adapt to display and modify such records? People should be also able to add their own objects and scripts to the ISC command tool rather than having to start from scratch for each new idea. We may not implement the code for some capabilities for a number of years, but the design of the tool must contain these concepts from the beginning.
The good news for the component developers is that the command tool designer never gets to say “I need you to change this so I can do that.” Since the command tool will not have this ability with externally written modules, it is a good practice to avoid from the beginning.
Data abstractions

A data abstraction is a way to organize a complex data set that lead to a clearer understanding of how to create the data store, present the data and operate on the data. For example, a contact management system is likely to have the abstraction elements of contacts, names, organizations, historical activity and future work. Using the data abstraction of a contact manager for an order processing system is likely to turn out badly in how you store, present and manipulate the order information.
Where we are now
When one looks at most current DNS servers and tools, they use the data abstraction of the DNS RFCs. This data abstraction has one specific purpose, to correctly and concisely describe the information that will be carried over the network between clients and servers to perform the operations defined in the DNS RFCs. The goals of this data abstraction are: exactness, minimum complexity and very little change to accomplish the job, efficiency of network communication and the like.

There is more information needed to run a nameserver than fits in the RFC data abstraction. These are the configuration files and extensions to the data formats to add the other necessary functions and the external data that is also useful in supporting the people who administer the systems. This is referred to collectively as metadata, and is just as important to successful operation of the nameserver as the RCF abstraction data. This data usually is in the form of exposing knobs and data hooks to support the extra functionality of a given system. Unfortunately, this metadata is a second class citizen compared to the RFC abstraction data and is attached in various ways with varying success to each flavor of nameserver or management tool. Having written and published one such management wrapper tool, I can safely say that this model of various types and layers of metadata done many different ways by different designers is a core issue in trying to understand what needs to be done to make better command tools.
At the root of this, using a data abstraction based on network communications and server capability exposure to manage a nameserver is not so dissimilar to using the contact management system data abstraction to build an order processing system. DNS administrators work with things like mail servers and the like. We know that a mail server is going to down the road turn into some specific data passed in DNS queries and responses, but a successful data abstraction wants to start with where the high level data is and work down, not start from the bottom up.
A comparable example would be to design a car by starting with the specifications of various types of roads. You would believe that tires and axles are the most important things to a car. The engine and transmission’s job is to put reactive power through the tires to be able to meet the speed limits, climb and curve specs of the roads. There is probably also some stuff about safety but it’s not well formalized. The other stuff is not so important so we will hang those all off to the side in a disorganized bucket of stuff.

Sadly, this is not so far from the state of command systems for DNS servers

How to move forward

BIND 10 is the key piece that lets us move forward. It is the modularity and extensibility foundation that creates the opportunity to create entirely different data abstractions without having to forklift the server. In fact, it may turn out that there will be classes and variants of data models that fit particular customer segments. It’s a brave new world and one that I see as being far better. I see this as something that the ISC is uniquely able to do and uniquely able to spread the impact of.
Layering abstractions

Before people panic and think that I am suggesting the throwing out the data that the low level server needs to do its job, this is not the case. The data abstraction of zones and resource records (RFC abstraction) and the like can remain intact or change as needed to best suit the modules for a give BIND 10 installation. It instead is a layer into which higher level data abstractions are transformed. But even in the RFC abstraction, things are not as static as they seem. It is classic to index the resource records by name, class and type, since that is the form of a DNS query. But in a signed zone, one needs to return all the resource records of a name and class to validate the signature, so the index might change to only contain name and class for database efficiency reasons.
How to approach finding a good data abstraction
If one were to follow an experienced DNS consultant working with a new client, the interview would be one of trying to translate the needs of the users into the consultant’s conceptual model and then down into zone andconfiguration files. It is far beyond the scope of this task to bring an arbitrary business model in, but the interview questions would actually make a good dialog for a “user wizard” and those intermediate objects that the consultant used would make an excellent basis for a data abstraction.

For any given user, once the structures are set in place it is somewhat hard to change. So we will want to get as much right as we can. Since the creation of this abstraction layer will no doubt change how people see the problem, there will be many things that are better understood in time and thus change is also inevitable. The important thing will be to put a stake in the ground at some point soon (with the full understanding that it will not be perfect) and code to that for the first release.
Abstractions and “natural” operations

There is a general sense that a particular type of object has a natural set of functions or operations that go with it. With a sales order, there might be a natural set of operations of printing it, adding it to other sales orders, sorting it and itemizing it. This is often how you know the abstraction fits well, when all the operations that are needed in the system are neatly attached to the pieces with the logical cross connections fit in place.
Reevaluating the data to metadata relationship

The first key tenet I would propose is that zone data and metadata are equal objects in the data model. In some cases it is the data that anchors some information and the metadata is attached to that. In other cases, it is the metadata that anchors and the data is attached to that. The process of reevaluating the organization and coming up with better abstractions is often known as refactoring.

In some cases, things that have passed for data can cease to exist as primary objects. If one looks at the entire logic of DNS zone cuts, with parent glue records, child SOA and NS records, these are really a protocol exposed form of metadata needed to support traversing the hierarchy. Along with zone cuts is a large chunk of currentconfiguration data about zone transfer controls, access lists and the like. From a refactoring point of view, it makes sense to collapse all this into a common structure and then create the necessary DNS resource records and configuration commands from the common data.
Given that zone cuts are one of the things that regularly give DNS administrators problems with getting the job done correctly, this single step could make a huge step in improving the administrator’s ability to get the job done right. This has the obvious advantages to the organization depending on the DNS service, but there are also other beneficiaries. The first group of beneficiaries is the organizations who delegate large numbers of zones or support large groups of customers who create zones (registries and ISPs.) When the configuration below the zone cut is wrong, there is a significant probability that a customer service request will be generated and a significant cost incurred. (We will extend this concept further later.) The second group of beneficiaries is the Internet users. If more zones are done well, the overall quality of the namespace increases.
The second part of data/metadata parity is that all data pieces are expected to have metadata attached and the form of that metadata shifts to meet the needs of the administrators. When I looked through the user requests collected on the list on the wiki, this was essential to meet the largest single class of goals. People wanted user access control, audit trails, change control, transaction structures with rollbacks, comments and similar things. All these things share the basic need for extensible metadata to be able to be cleanly tied to the primary data that people were manipulating. Even BIND 10 needs this itself to do things like incremental zone transfers.
Rather than trying to attach all these extra data elements onto the resource records, it often makes more sense to attach them to the higher abstraction layers. So rather than attaching all the controls to each NS resource record or resource record set, they are attached to an object called a nameserver and the zones that are involved. As an example, it is very painful to explain how to allow some people but not other people to be able to add a zone to the list a nameserver can offer when the controls are attached to the level of resource records andconfigurations. (This test of whether natural operations fit well is one to do often.)
If we get these data abstractions even somewhat correct, many of the things people have been asking for start being far more easily done.

Templates

Templates are a heavily used word, but they still seem to be the appropriate one for the next aspect of the new data abstraction. One of the common issues that management tools attempt to solve is that there are structures that want to be repeated in many places but the data abstraction has no mechanism to do this.

As a simple example, organization X wants all the zones in the US to use the same list of nameserver. In BIND 9, this would result that for every zone you would have the same set or resource records, for every server you would have the sameconfiguration structure and for every delegation you would have the same data, all tweaked to expand the right thing in the right place. There are countless tools and scripts to solve this simple problem and 50 others like this.
Generating the needed zone andconfiguration data is enough of a pain, maintaining it is harder and very error prone. By implementing a well designed mechanism into the data abstraction, another major area of user problems can be eliminated.
There are many ways to slice and dice how to do this problem, but there must be mechanisms within the data abstraction that allow for these functions. They must also meet the same bar for modularity and extensibility that the rest of BIND 10 does.

I will go as far as to suggest that it would be good and appropriate to offer an ISC set of templates for some of the most common usage cases. This would really help the “unknown horde” referred to in the overview.
Refactoring is an ongoing project
The reason for so much of the wanting in terms of customer needs is that people have tried to extend from the RFC based data abstraction. Since it was not designed to do any of the things being added, it always hurt to do and never was quite right. We all know and have experienced the incrementalism dilemma: on almost any event horizon, it is easier/cheaper to do an incremental change than to do an analysis and reimplementation cycle. We all know it is costing more “in the long run”, but the decision mechanism rarely can accommodate that. (BIND 10 is the exception that proves the rule and it still only happens once per decade.)
If a given change doesn’t work smoothly in the data abstraction, we need to discuss the issues with the abstraction before just wedging it in. The only purpose of a data abstraction is to make things work better. If it isn’t doing that, it may be time to fix the abstraction or even go to a different one. This is the only way that a data abstraction gets the continuous examination that it needs to continue to provide benefit.
These evaluations are best done within a community. Different goals, knowledge and experience brought to the table bring better results. More importantly, as the problems are processed repeatedly, the community develops a far higher common knowledge than any single pass can produce.

Data abstractions should be layered

As we have discussed, the abstraction of a given organization’s use of DNS naming that supports the organizations business processes is far different than the abstraction for the management of DNS zone cuts. The abstraction that is matched to the business processes related to DNS should be designed to layer on top of the abstraction for DNS zone cuts.

At first this seems simple, but one can also see a tension between this and the goal to examine and refactor existing abstractions. This is the gray area of design that has no answer, it is in the repeated evaluation of the competing goals that the community develops common knowledge of which belongs where.
Accessing external data

Another area for development is the ability to get data from external sources to be used in the command tool. For larger customers that have established provisioning systems or similar functions with data stores, it would be ideal for these to be retrieved directly by the command tool rather than trying to keep the two data sources in sync.
Modular, extensible scripting
The decision to use python as the interpreter for building things like the command tool has some important advantages. One of the best is that it obviates the need for yet another scripting and/or macro expansion method. With the ability to wrap exception handling around the entire scripting section and the ability to decide what happens in a very late binding way makes it excellent for this job.
One of the more subtle aspects of python is that the library is common and extensive, what they refer to as the “batteries included” approach. One thing is that it gives a stable platform to work against and another thing is it prevents different pieces of code from requiring mutually incompatible functions. Any long time php or perl admin has probably experienced this situation.

I refer to modular and extensible as different concepts and align those with what I believe to be the BIND 10 meaning. This function needs to be designed to deal with the case that a server module has been replaced or someone wants to replace a part of the tool without rebuilding. This is what I call modular. It also needs to be able to deal with the ability to add functionality in a relatively seamless way to the tool and deal with extensions to other parts of the system, what I call extensibility.
Beyond these basic guidelines, I want to look at few areas in which scripting can have a major impact for administrators.
Best Practices and Validation

At least for a while, RIPE had a set of requirements for the DNS related to delegated address space from RIPE. These can be seen in two different lenses. Through one lens, this is a draconian set of rules that have to be validated. Through another lens, these are a set of best practices that RIPE has determined to be important and have to be followed. There were those who vocally said it was the first, and others who simply looked at them and saw nothing other than a requirement for reasonable DNS configuration. The function is the same either way, it is only the consequences that differ and hat has no import to this document.

There a number of tools that examine the namespace with DNS queries to assess whether a zone appears to be consistent from the DNS query perspective. Unfortunately, this can only examine static aspects and has no awareness of the working server configuration. More importantly, these tools can not cause changes to occur that can then be validated.

The ability of a python script that evaluated both data and metadata from the server plus the ability to cause actions and measure results would be a major step forward. It would be able to do things such as verifying and timing notify driven zone updates. It would also be able to make some cursory steps in evaluating related error messages, the data and metadata to suggest probable causes for problems.
Again, this could make a substantial reduction of DNS configuration related service calls for registries and ISPs.

Managing clusters of server and complex server relationships

The other area in which there is great potential would be the ability of a single tool instance managing the data and metadata for a cluster of servers. I do not know if or where this is on the radar, but many larger users would benefit greatly from such a system. The ability to reliably and quickly create a zone with all the nameservers updated appropriately would be a major step forward.

[From early reading it is not clear whether the communications system can talk to modules on different servers or not. If that is not part of the design or is a later function, this can be simulated temporarily by using independent connections to each server’s management module.]
Scripts can also deal with nontraditional server configurations, such as stealth primaries, out of band zone data management and anycast servers with various relationships. These are all areas where reducing the likelihood of misconfiguration is a strong benefit to the administrator.

Incorporating business practices

This is the big prize. At the low end is simply encoding the operational practices of an organization into the scripting operation. Something like a direct integration with a ticketing system comes to mind. At a higher level, this can be where the internet naming pieces relative to products and services meets the implementation. Incorporating the DNS rollout into an over product strategy comes to mind. I do not see this as being something the BIND 10 team does, but it does stake a far point in terms of tool operation.
Proofs of concept and picking the biggest wins

This scripting can and will take on a life of its own. The role I see the ISC playing in this is to pick a couple functions that will both work as proofs of concept and resolve areas of significant administrative difficulty and build those. The rest will be guided by the community.

Command tool functions

[This is still under development.]

Displaying contents of data and metadata objects
Simple control of data and metadata objects

Troubleshooting mechanisms

Support for users from brand new to high power
Template management

Scripting

Tool functionality and data model extension

Tool API

In examining these capabilities, it may be desirable to capture parts of these into an API that other tools can use as well as the ISC’s command tool. This is a major extension to the basic requirement to develop a tool, so it is understood to be a longer term element of the overall tool effort. This will also benefit from writing a specific case first and using refactoring to get to a solid understanding of what needs to be separated out.
8/23/2010
Bind 10 command tool concepts
V0.11

