BIND 10 Command Tool
Product Requirements Document

Introduction
This document lays out the feature set for the BIND 10 command tool. It breaks the overall functionality of the tool down into a series of functional groups. For some of these groups, it lists in detail what is needed in the tool. In other functional groups, the function is sufficiently complex to only cover the basic requirements in this document with the understanding that a more detailed functional spec is required.
Marketing Requirements Document

This document does not cover either the overall motivation for the functionality required or the user scenarios that inform the specific choices made. Those are found in the companion document “BIND 10 Command Tool, Marketing Requirements Document” (MRD). As the specific functionality is developed, the MRD should be reviewed to ensure the overall goals are not lost as the details are worked out.
Functionality

This document focuses almost entirely on the functionality of the Command Tool. While there may be suggestions made for command names and detailed structures, these aspects are to be finalized as mockups are developed and customer feedback received.
Roadmap

BIND 10 is a 6 year project that contains many parts. These parts are being developed at this time and by design there is not a detailed plan for all the work. As the earlier releases go into general use, the customer feedback will determine the continuing development of the software.

The command tool follows that model. A number of aspects are clearly required and can be described to a good level of detail today. Other parts are larger components that often introduce new functionality not seen in prior ISC tools for managing BIND operations. This naturally forms a roadmap where the things close at hand have good detail and those farther away have less detail and will be effected by customer guidance.
Critical aspects of Command Tool

There are more details on each of the topics mentioned here in the MRD, but it useful to review the critical aspects that the command tool must address before jumping into the individual subsections.

Above everything else, DNS is a critical infrastructure resource to anyone running their own nameserver. Getting the data and configurations right, responding to changes quickly and having high reliability and short “time til repair” when problems occur are the bedrock on which all of DNS operations are built.
Server issues

There are a number of issues about the ways in which DNS servers are deployed and the design of BIND 10 that have direct impact on what the tool must do.
Server scaling

DNS servers have a range of operating scales that is very broad. Some DNS servers process hundreds of queries per day while others process tens of thousands of queries per second. No one expects the traffic to do anything but Registries now regularly have zones that will not fit in a 32 bit address space.
Server modularity

BIND 10 has broken apart the monolithic model of prior versions of BIND and moved to a modular approach to server design. This is expected to improve code and increase the performance on multiprocessor and multicore servers. It is also expected to simplify any given component of the system and thus increase reliability and security.

This presents a more complex view of the server for the command tool to manage. These are things that have not been addressed in prior versions of BIND, so new capabilities will be needed to provide operational control over this complexity.
Since this work is in progress while this document is being written, we must consider the fact that the functionality required may change as the modular components change.
Server extensibility

One of the explicit goals of BIND 10 is o allow non-ISC entities to provide modules that either replace or augment the capabilities that are offered in release cycles. This means that the command tool must be explicitly be designed to deal with data and configuration requirements that are not part of the BIND 10 roadmap. This is a major challenge and requires a careful thinking through of a number of issues.

Simplifications on the basis that the current BIND 10 server does it one way cannot be made in the command tool, as others may load modules that do things differently. We must instead go back to the fundamental operational goals and requirements for operating a DNS environment.

This is not to say that there are no restrictions that the tool can make. There will need to be areas where a choice needs to be made between A and B. Just know that if that choice is made on the basis of how the server works today, it may need to be revisited when other possibilities are added.
Tool issues

In addition to the requirements of that the BIND 10 server imposes on the command tool, there are a set of issues that are brought out by the needs of the tool itself.
Tool scaling

One of the issues in dealing with prior versions of BIND is that the command and control mechanisms have focused on a single server at a time. Only in small scale situations is there a single nameserver operated in isolation. In all other cases, there are groups of namesevers that need to work in concert to accomplish the operational requirements.

There must be a many to many relationship for tools accessing servers. A sever must be able to deal with multiple tools working with it at the same time. Also, a single tool must be able to make appropriate changes to sets of servers within a single procedure.
Tool modularity

As with the sever, the command tool must be designed in a modular form. There must be effective APIs that do the majority of work with modular pieces that connect those together into functional units.

This will serve two distinct goals. First, it will allow an incremental development of the tool, which is in sync with the roadmap model for development. Second, it will serve as a platform for others to build their own front ends, tools and automation methods based on the building blocks the ISC develops.
Tool extensibility

In the same way that others can add functionality to the BIND 10 server, it is important that people be able to add functionality to the command tool itself. In one way, this can be seen as adding a matching part in the command tool for added server functionality.

In another way, this can be seen taking the command tool in directions that the ISC is not focused at the time. It would then be possible for the ISC to embrace the work, refactor parts of the work into APIs that can be used by others or allow the path to continue without ISC involvement.
Broad range of user needs

The range of people responsible for operational administration of BIND 10 servers range from the most sophisticated people evolving the future of DNS to someone who has just loaded a binary package from a distribution. An additional challenge for BIND is that in many situations, the people responsible only touch the server infrequently and require a learning curve refresh as the work starts.
Creating a tool that can do the power tool things the skilled people need with limited interference while supporting those who are stale or inexperienced is a significant challenge.
Differing operational models

In addition to differing skill levels, different organizations will have very different models for the operating procedures that will be used to control the system. The tool can’t make a set of decisions that make using it in differing operational models impossible.

In the past, this has been done by offering very limited tools. To increase the richness of the tools while maintaining the flexibility is very important.
Making it easier to get things right

At the end of the day, the command tool will be measured by the degree it allows people to do their operational tasks successfully and efficiently. There are many things that can be done to improve the administrator’s ability to get the correct functionality and get it faster.
Many aspects of BIND configuration are seen as difficult

Everyone who uses BIND gets good at configuring zones. There are other parts of BIND configuration, such as views, forwarding, that people find far more difficult. These aspects require the command tool to structure the configurations better and help the user get it working more easily.
Will the changes made do what was intended

This is a bottom line issue for care and feeding of BIND 10. There are so many ways to do things thinking the right thing will happen, only to find that it didn’t. From forgetting to bump the SOA serial number when changing data in a zone to getting a view to offer the right information to the right people, there are many ways to miss the target. The command tool should have mechanisms that can address both avoiding mistakes and the ability to make sure the changes had the desired results.
Basic tool parameters
The command tool has an overall model of operation. This section outlines those basic aspects of the tool that form the overall model into which the features of the tool fit.
Text based
The command tool is designed to be a purely text based. This is the preference of many heavy users that need to accomplish complex tasks in short times. It also has the ability to be wrapped in scripts that increase the speed in which regular operations are done.

This is not to say that graphical user interfaces (GUIs) are not important and should not be developed, it is that such capability is not part of the command tool project. As described below, there are many places where there Application Programming Interfaces (APIs) are mentioned. By separating the functional elements from the text interactions, which is similar to the design in the BIND 10 server, the creation of a GUI or integration of the functionality into other tools will be far easier.
Command history and editing
The command line interaction needs to provide the ability to recall and edit previous functions provided in the command tool. Functionality similar to the ncurses library availably on many systems will provide the necessary capability.
Command disambiguation

As part of issuing the individual commands in the tool, commands must be able to be shortened to make the typing of common commands easier while allowing command names that are full and descriptive. Any command and argument must be able to be shorted to any length that allows it to be uniquely identified from other commands, disambiguated.

If the user types a command that is too short and is ambiguous, XXX
Hierarchical command structure

With a tool like BIND 9 rndc, there are very few commands and so the commands are not grouped in any way. As the number of commands and features go up, this becomes unwieldy for the user. It makes the number of characters that it takes to uniquely select a command longer. It also makes it harder to remember the commands.
No interaction modes
The command tool is not like an editor. You do not edit the configuration, you issue commands to modify it. There are no modes where only certain commands can be issued. There may be a transaction mode for how commands are processed by the server, but that does not translate to a mode in the command tool.
International usage
Due to the near universal deployment of BIND, the command tool must be able to work for users across the globe. The localization of the interface is an important aspect of the functionality and must cover all the aspects of the tool. Internationalization can also be referred to as localizing.
Commands

The commands are straight forward to internationalize, but users often prefer not to do this. Having the ability to have other components internationalized with fixed command names is a desirable ability.
The localization of the help system is much more important than the commands themselves.

Command syntax

This document uses the following syntax rules for commands:

· All standard text is command text to be typed as is, but can be shortened as long as it can be distinguished from other commands possible at the given location

· Text in italic indicates a value to be enered

· Arguments can appear in any order
· The ellipsis “…” means that the preceeding section may be repeated. The repeating structure is the entire element before the “…”.
· A section enclosed in square brackets “[]” is optional. The notation “[…]” indicates that there can optionally be more instances of the preceding argument
· A section that contains the form “(a|b|c)” means that one of the possible values a, b, or c must appear

· A section that appears as “(a,b)” represents a tuple and must be input in that form
Results

Some parts of the results are generated in the command tool as opposed to taken from the data representation in the server. These should be localized.
There is an interesting potential to improve one of the important aspects of working with the command tool. One thing that can be expected is for scripts to be wrapped around the command tool that then need to parse the results of the commands. It is also common to have generic tokens for all of the text elements to be localized. The idea is that these are replaces with the text and displayed to the user.
If the token was to be included in the output as well as the text, it would make it far easier to parse. It would also make the parsing independent of the localization chosen. The inclusion of the token would also make the parsing independent of the localization. The inclusion of the token should be a display option for the command tool.

The proposed approach would be to enclose the token in parentheses and the localized text in double quotes.
Error & log messages and statistics

As with the command responses, the error and log messages want to have the option of being localized. As with the responses, these message need to be machine parsed and would benefit from the exposure of the localization codes.
Character sets

One of the challenges with modern DNS is the introduction of international names into the namespace. To validate this, it at some level requires the ability to display the internationalized names. The command tool should have the option of displaying the names in either the local character set or the ascii equivalent.
Managing users and access

One thing that it is important for the command tool to deal with is controlling the ability to manipulate various aspects of the BIND 10 server. This reflects the fact that in most organizations that there is not a single person who administers all aspects of the servers. In larger organizations, the operations involve division of labor and teams of people doing various tasks.

There is a general idea of user login during the establishment of the command connection to the server, but little else is defined. It is not clear how this will evolve over the project and it is important that the command tool address how the functionality in the command tool will be controlled from the beginning.
Maintain a user set separate from server user list

The first design consideration is whether to use the server user list or to maintain a separate user list for the command tool than for the server. There are a number of reasons to maintain a separate user authentication system from that of the server. First, as a user deals with different servers, each could have a separate user list. Would the user need to log in and out for each one? Secondly, the data contained in the server datastore may have different access requirements than the data held in the command tool, so it could be very confusing.
It is preferable to have a separate login for the command tool with its own user data. When one looks at the other functionality that is desired, this becomes more clear.
Role based access control (RBAC) to control tool command and data rights

There are a number of approaches to manage the access by users to data and functions of the system. The challenge with any system is making it manageable as the number of things to be controlled grows. Given the common structure of operations into teams that have responsibilities, the use role based access control seems to be a natural fit.
In role based access control, rights to do some actions on some data is assigned to roles. So if we have a role called “zone allocation”, it would be given the rights to add, modify and delete NS records in zones and control the zone transfer configuration elements. Then various users would be added to the group and they would each be given all the rights of that group. So a user’s rights are the combined rights of all the groups to which they belong.

Groups can also contain other groups, so the “zone allocation” could be used by the “namesever administrator” to gain the needed rights.

This also makes it important to have the user list combined with the group allocation, so one doesn’t run into the problem of names being changed without the groups following.
For the access control, there are elements defined that represent the things to control and the permission can be done with the set [read, create, update and delete] (sometimes referred to as CRUD.)

The commands needed include:

♦rbac role add/delete rname
♦rbac role list

Needs to error or require confirmation if there are still users that have this set

♦rbac role=rname access add/delete/modify element CRUD
♦rbac role=rname access list
♦rbac user=uname add/delete
♦rbac user list
♦rbac user=uname role=rname add/delete

♦rbac user=uname role list

♦rbac user=uname password=password
♦rbac login=uname password=password (password should be prompted for is not on the command)
♦rbac logout

There needs to be a login argument to the command tool when run at the system prompt.
Commands to manipulate server user list and server rights

There are three parts to mapping the RBAC user to the server user. There is the ability to create and manage server users, there is the control of the mapping of RBAC users to server users and the control of the user rights on the server.
The control of server users is done through the access group. Commands include:

♦access [serverset=sname] user=sname add/delete

♦access [serverset=sname] user list

♦access [serverset=sname] user=sname password=password
The mapping of RBAC users to server users is done with the commands (server groups are discussed below.) The optional password allows for automatic authentication of server connections.
♦rbac user uname map [serverset=sname][password=password]
Since the server rights system is not well developed at this point, this aspect of the command tool is not addressed at this point.
Log logins and failures

There needs to be a logging system for the command tool and logins and login failures need to be logged as configured.
Server access

Once the user has logged into the command tool, the next thing to do is to connect to the server or servers on which individual actions are to be taken. Because of the fact that there are not monolithic configuration files for BIND 10, individual commands must be issued to create the desired configuration on each server. This means we need an effective way to manage the servers and that starts with the way connections are established.
Implementing Administrative Domains

In all but the smallest DNS environments, servers do not work in isolation. Instead, they must work cooperatively to deliver the service that is desired. When a group of servers are managed by a single operations organization, it is more useful to look at the servers as a set and use various set operations to select which servers the commands will apply to.

To manage the connections, there is the concept of a serverset, which reduces to a list of server IP addresses to connect to. DNS names can be used to look up the IP addresses in the commands, but it is the IP addresses that are stored in the command tool datastore. This allows the tool to work when DNS is not currently functioning. A serverset is a collection of servers that will be acted on as a group.
♦access ad serverset=sname add/delete

♦access ad serverset list
♦access ad serverset=sname server FQDN|IP add/delete

♦access ad serverset=sname server list
Support connections to multiple servers
The first operation is to connect to the server. The command tool must support simultaneous connections to many servers. The command tool should be able to log all connects and failures to the command tool logging mechanism.
♦access connect serverset=sname
♦access disconnect serverset=sname

To connect to a single server, use the following command.

♦access connect single FQDN|IP [name sname]
♦access disconnect single FQDN|IP|sname
Support operations on multiple servers at once
One of the most powerful aspects of a serverset is to allow a command to be sent to every server in the serverset without any additional effort on the user. There is an optional “serverset sname” for almost all commands. There is also a command to set the default serverset for subsequent commands to use. If no default has been set, the commands are sent to the last serverset connected to.

♦access default sname
Identify tool connections as different from other access

There can be other things that can connect to the BIND 10 server either by building on top of the command tool APIs or by other software connecting to the command channel directly, the command tool should have some way of identifying itself to the server in case the server is logging connections.
Managing for multiple access

Because the situation exists that multiple users could connect to the same sever at the same time, through the command tool or otherwise, it is important to be able to manage that multiple access. Since that mechanism has not been developed at this time, we will defer on defining the commands for locking under the access section. It is unclear at this time whether the ability will exist to queue yourself for a lock and then be issued the lock and notified when you reach the top of the queue.
Transactions

As soon as one talks about locks, the next thing to come up is adding transaction semantics to the changes. From the user’s view, it should be as simple as beginning transaction, issuing commands and finally either committing or rolling back the transaction. The details of this will depend on when and how the transactions works in the BIND 10 server. Transactions are discussed in greater detail in the configuration section of the document.
Data management
The next major step is to manage the data in the server datastore. It is assumed that in some cases, the users will bypass the command tool and directly manipulate the server datastore in its native form. Even with this, it will be necessary to manipulate the contents of the server datastore with the command tool.
Commands to add, delete and examine server datastore resource records

These commands are for manipulating the abstract level of DNS data elements and the operations available through the BIND 10 server. The desire for things like SQL select commands only makes sense if the server datastore is implemented in SQL. For this document, it is assumed that those capabilities would be available to the operations group directly from the server and do not go through the command tool.

The basic data element for the datastore is a resource record. Though the basic DNS protocol only operates on all the resources records (RRs) of a given name, class and type as an entity (RRset) both according to dynamic DNS and operationally, the individual RRs of an RRset can be accessed and manipulated. It is especially useful to track the individual RRs when looking at audit changes and when additional operational information is attached to the RRs.

RRs needed for hierarchy navigation re discussed separately.
Basic commands

There are several commands needed to be able to control the RRs in the sever datastore. This only works for master data, any attempt to modify data that is being managed by xfrin should return an error. At this point, this is not seen as applicable for locking entries into the cache of a recursive sever, as it does not have the ability to include error states as well as resource records.
We should either fail or warn and require confirmation if this command is sent to a set of servers rather than a single server. [I would be inclined to fail]

The commands are:

♦datastore rrdata create name=name [class=class] type=type data
The name is a fully qualified domain name (FQDN) with a trailing dot (“.”) or a partial name that is referenced to the current origin command. The name can either be in the RFC1035 character set or the new internationalized form. Type can be either a defined type name or an integer <=255. The data can either be in the text format defined by an RFC for the data type or as a hex string 0x[0-F]… with the alpha digits being case insensitive. The default for class is IN.
♦datastore rrdata delete name=name [class=class] type=type (data|*)
The data here must match an existing resource record in the datastore, while * deletes the dataset.

♦datastore rrdata modify name=name [class=class] type=type olddata newdata
Modify could be implemented as a delete followed by a create and the olddata must match an existing RR.
♦datastore origin=FQDN
For these commands, it is should also be possible to attach a opaque token that is stored with the RR and returned upon retrieval. This token can be used to link either command tool metadata or user data to the RR. In the case of RFC text data format, the token is preceded by a semicolon (“;”) and surrounded by braces (“{}”). In the case of hex data, it is preceded by a space and surrounded by braces.

Loading zone files

It is an open issue at this point whether loading zone files into the server datastore will be done through the command tool or as a stand-alone tool. [need to answer this.]
Data examination

The ability to extract and examine data from the server datastore is a very important function. Without the zone files that have been the mainstay of BIND, there is no easy way for someone to look at the contents of the namespace. This means that we need to have a number of options to allow the operations staff to understand the DNS data that will be offered to clients.
Zone dumps

The simplest form of data examination is extracting of all the RRsets from a section of the namespace and writing the data to a series of BIND 9 style zone files.

The user needs the ability to specify the apex of the namespace to start dumping. The need the ability to limit the lower bound of the traversal by either the depth of zones below the apex and/or by lower bound in terms of another point in the namespace. Note that levels in this case represent lable count and not zone count, which can be different. If there are additional levels inside a zone that is within the level limit, they will be dumped as part of the containing zone.
The user also needs to be able to specify where the files go and how the filenames should look. The directory is in the form of the operating system the command tool runs on. The form is a printf string with a small number of substitutions defined. The suggested initial substitutions are “%z” for the zone name, “%d” is the data and “%t” is the time (“%%” becomes “%”.) Any text other than the expansions is rendered as is. The default form is “%z”.
Attempts to overwrite existing files should produce a user prompt with the options yes, no, yes to all and no to all.

The command for this is

♦datastore dumpzone top=FQDN [levels=n] [bottom=FQDN…] directory=filespec [form=printfstring]
Complex data matching

It is import to be able to look at filtered data from the datastore as well as being able to dump zones or issue command channel queries (discussed below.)
The first issue is how to specify the search parameter. There are many ways this could be done, this proposal is to have a unix shell style regular expression for the name matching and either a list of types or a type value of “*”.Matchop allows the server to distinguish between things that are known by the datastore and not shown in DNS. The second issue is how to bound the data matching. This uses the same bounding method discussed in the zone dump.
The final issue is how to order the results. The command as shown only has choices that are known as part of DNS data. As other types of data are exposed, there needs to be a sort tag added. The default sort is by name. The reverse argument is self explanatory. The tags argument says that the user wants additional data retrieved from the servers in addition to RFC data.
If a top of search is specified, it also becomes an origin for relative names in the command. If top is not specified, the setting of the origin command is used for relative names (not ending with a dot.)

The command is:

♦datastore match [top=FQDN] [levels=n] [bottom=FQDN…] type=(name|number|*)[…] search=regexp [matchop=value…] [sort=(name|type|data)] [reverse] [tags]
How matchop can work
One challenging thing for DNS operations is a zone that contains both static and dynamic RRs. If the server has a flag to say if the RR was installed dynamically, then there could be a matchop of dynamic=(yes|no|both) to be able to decide which records would be displayed.

Another example of matchop would be the server keeping track of the SOA serial number of an RRset or time when an RR is inserted. These would turn into matchops of sngreater, snequal,snless, itimegreater, itimequal and itimeless.
Does this apply to recursive servers
It is unclear whether the match command would work for recursive server caches. As currently defined, this is just for the datastore and not the cache.
View support

It is not listed on the individual commands, but it is always an option to add the phrase view=vname to any of the data commands above. The default is to select from the default view. A single command can not operate on more than one view at the same time.
Data validation and morphing

One important use of the match tool is for validating an external data representation of the DNS data with that from the datastore. The validation of the external data is needed because of the server accepting connections from different tool instances. This becomes critical in the discussion of the command tool metamodel described below.

Datastore content manipulation can see major benefits from transactions and the ability to compute the commands to change the current state to a loaded state or the loaded state to the current state. These are dependent of server functions yet to be developed, so it can not be discussed further.
Logically separate RFC metadata resource records from other records
This is a subtle change in the way the data in the datastore is viewed. In the BIND 9 paradigm, delegation records, SOA records and NS records are viewed as the same as any other record in a zone with the exception that there can be only one SOA in a zone file. I combine these records into the phrase “navigation RRs.” Another case of RFC metadata is DNSSEC records which are again just seen as more records by BIND 9

In simple situations this makes sense, but in more complex situations this becomes problematic. For navigation records, there are synchronization issues between the RRs and configurations on multiple servers to be managed. With DNSSEC record, there is an entire singing and key management system required.
Different commands

At the very least, these records need separate access control from other records in the namespace. The more fundamental issue is whether these records should be controlled by the same commands that are used to control other records in the datastore or should they have purpose specific commands. There will always need to be a way to directly manipulate these records on an emergency basis. There will always need to be a way to directly manipulate these records on an emergency basis.

Singing is such a different operation than any other kind of operation for DNS data, I believe it makes sense to have separate commands and restrict the use of standard commands on these records in normal operation. The datastore match works on these records the same as with other records.
The general form of these commands is

♦datastore security key create/delete/modify name=name data=data
♦datastore security signature create/delete/modify name=name data=data
♦datastore security nsec create/delete/modify name=name data=data
♦datastore security nsec3 create/delete/modify name=name data=data
Replace zones by zone cuts

The case for the change with navigation RRs is less clear cut. Editing the zone files directly or generating the records into zone files is all BIND users have known.
In the IETF DNS clarify work, it became clear that what really exists in DNS are answer records and zone cuts. The mapping of names to zones is a decision driven by operational and other issues rather than DNS syntax, as there can be any number of labels described on a single server with no other zone cuts. The cuts reflect changes in administrative domain or operational choices about servers and wildcards.

One advantage is that we can create a command that manipulates single fields within a SOA RR.

♦datastore navigation SOA create zonecut=zname value=datalist
♦datastore navigation SOA delete zonecut=zname

♦datastore navigation SOA modify zonecut=zname field=fieldname value=data
♦datastore navigation nameserver create/delete zonecut=zname server=nsname
♦datastore navigation nameserver modify zonecut=zname oldserver=nsname newserver=nsname
♦datastore navigation gluens create/delete zonecut=parentname server=nsname
♦datastore navigation glueaddr create/delete zonecut=parentname name=FQDN type=(A|AAAA) address=address
Views

One of the changes made in BIND 9 was the addition of views. This was specifically designed to allow different answers to be given to different clients connecting to the server. The use of views is most prominent in situations where there are private networks and/or firewalls.
Always a global view

All the datastore data manipulation commands can take an optional view=vname argument. There is a default global view. Other than data components, all other aspects of views are discussed in the configuration section.
Tool data metamodel and automation
As mentioned in the MRD, automation is less prevalent than one would expect for a system that requires significant data consistency and can have large data sets. When one looks at the tooling that exists, it tends to attempt to build zones files and config pieces by logic and rules rather than from a more complete view of the data.

The solution to these issues requires a bold step for the ISC. It is my opinion that the only way to change this situation is for there to be automation delivered “out of the box” by the ISC. While this is a significant undertaking, the benefit to the user community and the ability to differentiate BIND 10 from any other namesever on the market is far more significant.
Motivation

The ability to have accurate, consistent data is the number one goal of any DNS environment. The ability to quickly and accurately have the data in the DNS be updated to reflect changes in the system is key to successful operation of DNS. BIND has lost major customers to groups like Infoblox for the reason that the ability to maintain the data is far easier.

Customers also want greater levels of accountability and access control to the DNS data and configuration. This is extremely difficult to do in the current BIND design of zone files and a monolithic configuration.
What and why a metamodel

The design of most automation tools up to this point has been to start with the information you want to represent (resource records and config entries) and build tools to manipulate these elements. The approach is logic driven, with complex rules that cause all the right things to happen. The result of a design like this is that it rapidly becomes very complex and is almost impossible to find commonality to serve many different organizations.

The problem is a failure to separate the elements that control the data from the elements that reduce them to DNS records and configuration elements. To address this issue, we need to build a data model that reflects the objects that the customer has in their operational environment and then as a separate step translate those objects to DNS data and configs that represent the customer environment.
One metamodel will not fit all customers. The ability to modify or replace the generic ISC metamodel with a more customized model is an important requirement of the system.

Managing the metamodel data

The first part of the metamodel is the data representation of the environment that the DNS describes. This is best viewed as a hierarchical object structure in which basic objects such as devices are further specified to be mail servers, web servers and the like. This information will be turned into the DNS data that the server needs.
The goal of the data representation is to align with the objects that the operational organization naturally deals with. They have mail servers that handle messages for given “domains” (whatever goes after the “@”.) They have tickets that track all the operational actions processed by the operations team. They have provisioning systems that link devices to richer structures for the organization.

The tool will need basic mechanisms to add /modify/remove the elements in the data representation. The tool will also need to be able to explore the elements so that staff can understand the current state of the metamodel.
The ease in which the normal operational tasks are done is a good assessment of the congruence between the data representation and operational view of the environment.
Access control in the metamodel

One of the key benefits of the alignment of the metamodel to the operational processes is the natural fit for access control. If you know that a given role has the regular job of maintaining a given aspect of the operation, the access control for those elements comes out naturally. If a mail administrator regularly changes which servers handle which “domains”, then there is a natural access of a role, mail administrator” to the elements “served domains of a mail server.”

If one were to try to give this granularity in the BIND 9 zone file model, it would require a level of complexity that would be both hard to put in and hard to maintain.
External data in the metamodel
Another key aspect of the metamodel data representation is that it allows for sections or elements of the model to be derived from or housed in external data stores. For organizations like ISPs where there are complex provisioning systems that impact many things, this is critical. The actual elements representing devices are controlled by that, but also need to be integrated into things like how the data is allocated to various nameservers at any given time. The metamodel allows the external data to be seen in terms of an integrated model of the DNS environment.
Transformations to DNS data and configuration elements
The second part of the metamodel is the rendering of the overall information in the data representation into DNS elements that the server requires to correctly provide the service. These are described as the transformation process.

The transformations need to generate 4 things to be successful. First and most obviously, they need to generate the resource records that clients need to navigate the network. Secondly, they need to create all the records that relate to zone cuts, where there are glue records in the parent and SOA and other records in the child. The third thing to create is all of the configuration pieces that are needed to operate the BIND 10 servers. In some cases, such as zone cuts and views, the configuration and the resource records are directly couples, and in other cases the configuration elements stand alone. The final things that is needed are linkage mechanisms such that exploration of the data in the server datastore and the configurations can be linked back to operationally significant elements in the metamodel.
Build and distribute data to servers

Once the data has been transformed, the BIND 10 servers must receive the data and begin to operate with the new data. The ability for the command tool to interact with multiple servers at once becomes critical in this case.
Synchronizing server and tool data and configurations

Another key aspect of working with a metamodel is detecting when there have been changes made on the servers that did not come from the metamodel. There is not a guaranteed reverse transformation from changes on the server to changes in the metamodel. In fact, there is almost always information loss in the transforms from the metamodel to the server data.

So the best way to approach the synchronization problem is to build what the metamodel thinks the state of the server should be, then compare them against the actual server state.
Requirements
This is a significant project in its own right. A separate PRD will need to be developed for this as part of the overall roadmap.
Macro/template system

When one looks at the difference between BIND and DHCP, one of the key differences if the way in which DHCP uses programmatic expansion to make managing the complexity of the many options. It is desirable at some level to bring the management of BIND and DHCP together, and this is one of the useful things to bring into the overall picture.
There are a number of benefits to a well designed system for flexible creation of DNS data. First, it allows for a reduction of errors because common data is not recreated many times. Second, it allows for much greater consistency, because a change in the template updates all the places where it is used. Third, it allows for much more granular levels of access control, so you can separately control who can change a given template, who can add and delete template elements and who can affect other changes in the DNS data within a section of the namespace. Finally, it makes auditing better by reducing the noise where a single template change produces many data changes in the datastore.
There are a number of decisions to be made about this capability. First is choosing a name for this. Some see this as a macro expansion process akin to cpp and m4. The experience with DHCP has shown this not to be powerful enough to describe the range of operational tasks required. Others will see this as a full blown scripting system, but making it a Turing engine is not the goal. Instead, the system must be able to examine the data passed directly to it, the context in which it is being expanded and be able to make simple decisions on how to create the information to be emitted. I use the term template to describe the unit, as it creates less confusion as to what is meant.
Another question has to do with binding. For the use of the command tool, it seems like the expansion wants to happen as a last stage before data is sent to the server datastore for update.

The details of such a system will require customer requirements collection and design discussions beyond the scope of this document.
DNS queries over the command channel

The ability to inject a query over the command channel is significant addition to the overall functionality of the server and command tool. The need for this comes out of personal experience of debugging many different DNS problems on different servers and being asked to improve the operational control of the Cisco Distributed Director product.
In the current customer survey, the number 1 “hard to configure” feature of BIND is views. This is because the server is making subtle path choices while processing the query. There may be ways to make the definition of the views easier, there is no replacing being able to build the configuration and datastore and then exercise the paths. Being able to exercise all the paths by sending queries from an external box is hard. The solution is to be able to create synthesized queries via the command tool and carefully analyze the results.
As more features are added to manipulate the processing from standard processing, the more important this capability is. With blacklisting, whitelisting, client filtering and the like, the ability to easily see how queries are being processed are being processed becomes critical.
A major new capability that will exist first in BIND 10

Because this needs to be wired into the core of the query processing path, fitting it into existing DNS engines can be quite challenging. Since these functions are more often involved in the recursive servers, the timing for putting this in is good.

While there will be pressure to retrofit this into BIND 9, the age and complexity of the code base could make this difficult. The delay in doing this may push people doing complex query manipulations toward BIND 10 sooner.
How you know what the server is doing

The goal of the command tool query capability is to examine how the query will be processed and what information will be returned. The desire is to capture and return as much information about the processing steps in addition to the final data and return that to the tool. The tool will then present the information to the user, possibly with varying levels of data exposure.
What this server knows

The first part of the problem is to get the current information in the server. What is the current SOA record for a given zone cut? What is the data in a given view for this query tuple? Did this tuple get a blacklist response or not?
How it will handle a given query

The second part is gathering information about how the query was processed. This is where being freed from the DNS answer format comes into play. We want to be able to tell the user not just what the answer is but how the answer was arrived at. What view did an answer come from? Was the answer from cache? How long was the elapsed time for processing the query? How many upstream queries did this query produce?

As new processing control features are added, the desire to understand the processing path becomes greater. Was the response from a cache wired negative entry? Did a query from a given IP address get dropped by a DoS filter, if such a function was to be added to the server.
How it would hook into the server

My current assumption is that the mechanism would inject the queries into the processing stream after the unmarshalling of the query is finished. There would need to be some kind of structure allocated to collect all the information that does not go in the answer but is wanted for the full understanding of the processing. The finished query would be diverted just before marshalling and sent back to the command tool.

A special case may be needed if there is a feature that would affect the packet processing that occurs before the query is unmarshalled. If this is the case, those processing mechanisms need to be checked before inserting into the processing stream. This is often discussed in terms of preventing DoS attacks and throttling “chatty” clients.
The structure of the command

Since name sever operators are quite familiar with the dig command for giving them detailed information back about a query, I would view it as a natural base to develop the command from. The command could be names something like “digcc” so people know it works like dig but uses the command channel. Dig uses a set of command arguments to control what query is sent where, so it seems natural to create new command arguments to allow the specification of things needed for the extended capability.

It needs an argument to select the server to which the query is sent. An argument something like “server” would be used and it would take a server identifier token as returned from the server connection mechanism as its value. While this is different from the “@” mechanism of dig, I am not sure we want to overload the “@” mechanism at this time.
The response information should be designed to be both easy to read and easily parsed by command tool scripts. These parsing mechanisms should be included as an API for people writing scripts.
Setting source addresses

This is the first thing that is necessary is the ability to specify the source address that the query should be seen as coming from. This is important to see if ACLs for things like forwarding and views are operating correctly. I would propose an argument something like “source” with an value of an IP address (v4 or v6) or a name to be looked up against a recursive server and then translated to an IP address for the query. An outstanding question is whether the lookup is done with another digcc query or it is made as a traditional DNS query and sent to either a default server or a server chosen with the “@” selector.
Selecting views, forwarding

It is often desirable to bypass the source selection mechanism and directly specify a data mechanism within the server. This is often done while changing functionality while not yet having any selection mechanism in place. This is very useful to test things before exposing them to the general users of the server.
We have identified two cases in which this would be useful with current BIND 9 capabilities. The first is for views, where an argument “view” is used with the desired view as a value.

The second case is to use a configured server forwarder, in which the argument forwarder takes a value of the forwarder to use.
Extra data not available in DNS answer

The other power of the digcc command is to identify how the answer was arrived at and return that along with the standard answer to the command tool. I am proposing that the full information be collected for each query and that the tool be capable of limiting the output.
Processing information

There are a number of things that determine how an answer is determined for a given server. We want to be able to tell the user the following information:

· Was the server authoritative for the zone?

· What view did the data come from?

· Was a forwarder involved? [R]

· How long did the server take to process the request?
The [R] indicates that this is only meaningful for recursive servers. This output would be suppressed if the pd switch is added.
Data information

The other area of extension from standard dig is to collect information about the origin of the data that is being returned. This is a very powerful mechanism to understand how the information for the answer is connected to the larger operation of the servers.

For authoritative servers, there are a number of pieces of information that are very relevant. Unlike for DNS, it is desirable to know information about each resource record rather than the set as a whole. This both reflects the dyamic DNS spec and also operational needs. Some of this information is kept in some form now and others would need to be added to the data store. Data to return include:

· Time at which the resource record was added (new)

· SOA serial when the record first appeared (this is currently per rrset)

· If added via dynamic DNS

· Tool used to generate the data element

· Server data source information
For recursive servers, there are different types of information to be added
· Did it come from cache?

· Did it come from a datastore source (RPZ…)

· How many upstream queries did this query generate
Logging information

One common practice today is to have very detailed logging mechanisms in the code that can be turned on and off to debug particular problems in processing queries. This has proven useful and necessary, but it suffers from the problem that it is either on or off for all the queries being processed by the server.

It would be extremely useful to allow the command channel query define a logging level and capture all the log entries and return them along with the answer up the command channel. This would allow active servers to examine and debug problems with no impact to the queries coming in from clients.

A second benefit to this method is that all the information for the query does not end up in the general logging stream and that logging from different tests do not need to be manually separated out from a single stream. All the logging results the user needs are right in the response.

The current concept is to create named “logging instances” in the configuration. It would be a set of logging configuration commands that are available for use with digcc commands. There would be an argument of the form “logging=instancename” that would determine what information would be gathered for that query. If it is omitted, the server default logging is used and the result iscaptured and returned on the command line. Using an logging instance name that does not exist is an error that aborts query processing.
How to hook to external data

It is often desirable to be able to trace the data to the operational actions that caused it to be created. This can be seen both in the desire for audit trails and for the ability to be able to connect it to things like operational tickets. When a metadata model is used in the command tool, there are a significant number of things that can be added to the data.
Rather than endlessly extending the datastore to add all these possible pieces of data, it makes more sense to have a single identifier attached to the data and have a separate data store that allows the mapping of the identifier to external information. I would propose that the server data source information be represented as an unsigned int of some size (32 or 64 bits) that is treated as opaque token that the server and the query mechanism.

Then other information on the command tool side or external information can contain this token for connecting this to other information. This would apply to things that are kept in the server datastore, including auth data and negative cache data such as RPZ.
Configuration

The other major aspect for operational control and the one that causes more difficulties is the configuration that determines the actions of the server. Everything from addresses/ports to listen on and sections of the namespace for which this server is authoritative to logging and data sources, it all ends up in the configuration side of the server.
BIND 10 configuration is a major departure from prior versions of BIND. Before, there was a single monolithic configuration file that controlled all aspects of the server. One serious problem with this design was that any change to the configuration required all aspects of the configuration to be reprocessed. With high traffic servers and large zones, this has become a significant liability.

BIND 10 has chosen to structure the configuration to reflect the modular nature of the server design. For any given module, there are the configuration parameters it depends on and changing others has no impact on it. It is assumed that the server handles all notifications for configuration changes and handles any inter-module dependencies for configuration elements.

Transactions

One of the major challenges to the new system is that there was implicit transaction logic to the reloading of the configuration. The new configuration became the running configuration, there was no intermediate state that was ambiguous and there were no vestiges of the prior configuration left over.

With the new server system, configuration changes are made on the fly. This can produce intermediate situations where the configuration is ambiguous or illegal even though the final state of the set of commands is fine. It also means that there may be unwanted remnants of the prior configuration left on the server.

Juniper solution

While it is beyond the scope of this document to discuss server features, it is worth noting that one of the more successful approaches to the problems of incremental configuration changes can be found on Juniper routers. The routers have a complete transaction model for commands, with begin, commit and rollback mechanisms. It also has the ability to “morph” to a configuration. The new configuration is loaded into an area and the server internally issues all the necessary commands for the router to reach the state described by the new configuration.
Modularity

One other aspect of transactions in BIND 10 is that they can be limited scope. A transaction that has no impact on a given module does not need to rebuild that module’s configuration elements. This would also for morphing a partial configuration relating to a subset of modules.

General form of configuration commands

There are two different types of configuration commands for the command tool. They are designed to give different levels of abstraction for configuration.
Default

For all command that have a value=value phrase, putting default is a valid replacement. It is important to differentiate setting something to default from setting something to the value of the default. As modules evolve, the default value of the configuration element may change as well. If the user has set the value to the default value, it will change with the modules. If the user has set the value to the value of the default, it will not change even if the default does change.

If there is no server default for the element that the user has tried to set a default value of, the sever will return an error.
Low level module control elements

The first type related to direct exposure of internal control elements of the modules. These controls are designed to provide the lowest level of server control. It is assumed that the user has direct understanding of the elements that are available for a given version of a given module. There is no checking on the command tool side for existence, syntax or semantics on these commands.
The command has the forms of:

♦configure element create module=modname element=elementname [(subelement=elementname, subvalue=value) …] value=value
♦configure element delete module=modname element=elementname [(subelement=elementname, subvalue=value) …]

♦configure element modify module=modname element=elementname [(subelement=elementname, subvalue=value)…] value=value
♦configure element list module=modname [element=elementname [(subelement=elementname, subvalue=value) …]] [select=regexp]
It is assumed that there is a hierarchy of elements, such as a named ACL with entries contained within it. In this case, the element would be namedACL, the subelement would be name and subsubvalue would be the name. If one wants to add a new entry somewhere other than the end of the list, they would add another subelement block with subelement = line and subvalue = line number and it would be added before that line.

Abstract configuration controls
The rest of the configuration section covers logical entities for the command tool to control. While these will most likely be available for control via the low level functions, these operate with the conceptual objects that users understand and provide data checking that will be very useful to the users. People needing to migrate from other nameserver software to BIND 10 will need and expect this level of abstraction.
Server controls

Server configuration covers things that are general to the server. Some of these things are similar to BIND 9 and others are new to BIND 10.

To control what ports the nameserver accepts connection on:

♦configure server query listen=listenspec
Listenspec takes the same form as that for BIND 9.

For the command channel:

♦configure server command listen=listenspec
For the server message bus:

♦configure server message listen=listenspec
[are there separate controls for xfrout?]
To identify the server datastore:

♦configure server datastore driver=drivername access=URL [schemamap=filespec] [user=dbname password=dbpassword]
The driver specifies the type of data access and the routines the server must use to access the data. The access is how the datastore will be accessed in the form of a URL. The optional schemamap is a file that tells the server the query strings needed to access the needed data if the schema of the datastore differs from the ISC schema. The user and password are for a datastore that has authenticated access.

In prior discussions the datastore have been seen as private to the auth module. I believe multiple modules access the RRset section of the datastore and the datastore has more things to handle including configurations and user rights.

Handling server options

If one looks at BIND 9 configuration, there are a significant number of options that can be set. These options are often the result of new capability being added to the server. Since this will be true for BIND 10’s evolution and extensibility, the growth of possible options needs to be built into the command tool. To address this, the list of options is kept in the server. It is an open question whether the command tool retrieves the possible options to be able to check commands or defers all error checking to the server.
At the same time that we want new options to be easy to add, we also want it to be a reasonable process for the command tool user to be able to understand what options are possible and what to do with them. One of the challenges of moving away from the monolithic server to modules that can be replaced it that there isn’t a single place to look for all options.

To address the ease of use, there is an explain argument to the command. When this is included, values are not allowed. With explain, a short explanation and for form of the needed data is returned rather than the current value. If the detail argument is also added, a longer explanation of the option and its data is returned.
♦configure server option [optionname=(enum) [value=value]] […] [explain [detail]]
The option command either prints the current state of the option is the value is missing or sets the current state if the value is present. If no optionname is present, all options are printed. If the current value of an option is the system default, that should be indicated in some way as well. An option command can have any number of optionnames on it, it is as if each one is a separate command.

Authoritative Zonecut controls

As discussed in the data section about hierarchy traversal data, it is essential to keep the DNS RRs telling people which servers to ask for data in sync with the configuration saying which zones a server will answer for. The commands in this section control these aspects of the server operation.
Need for coordination among servers

In addition to the synchronization between the datastore information and the server configuration, there must also be coordination between servers. This in one area in which the serverset is really effective. When you make changes, it will apply to all the servers in the serverset.
Modules involved

There are three modules that are involved with configuring zones. The auth module is responsible for answering of queries against the datastore. The xfrout module is responsible for responding to zone transfer queries. The xfrin module is responsible for receiving update messages and requesting zone transfers.
Basic commands

There are a number of basic commands that control a zone. These are most of the possible elements from a BIND 9 zone stanza. The one major thing that is missing is the file, as the data is taken from the unified RR datastore.

To create zone configuration data or enable a disabled zone:

♦configure zonecut enable zonecut=zname zonetype=(master[=(IPaddr|FQDN)]]|stub|forward=(IPlist|namedacl)|hint|delegation)
♦configure zonecut option zonecut=zname [optionname=(enum) [value=value]] […] [explain [detail]]
This command follows the model of the server option command. See that command to understand the overall functioning of command and the meaning of the explain argument.

The master argument must exist if the zone is being created. If the master argument is used without a value, it indicates this server is the master for the zone. If there is an argument, then this is the address or FQDN is used as the address to transfer zones form. If it is a FQDN, it is converted to an IP address before sending to the server and all record of the FQDN is lost.

The option command either prints the current state of the option is the value is missing or sets the current state if the value is present. If no optionname is present, all options are printed. An option command can have any number of optionnames on it, it is as if each one is a separate command. The enum is retrieved from the server to get the list of possible options.
To disable a zone on this server:
♦configure zonecut disable zonecut=zname
This does not delete the zone configuration data, it simply tells the server to not use it.

To remove all the configuration information about a zone:

♦configure zonecut delete zonecut=zname
Control of SOA S/N

In many cases, it is desirable or mandatory that the SOA serial field be update automatically when data within the zone changes.
This command controls the updating of SOA serial:

♦configure zonecut autoserial zonecut=zname (manual|automatic) [interval=nnn]
The interval arguments sets the minimum time the server will collect updates before the serial is bumped.
Dynamic DNS controls
♦configure zonecut dynamicdns zonecut=zname (enable|disable)

The only thing special about this command is that if it switches from disable to enable and the autoserial is set to manual, it needs to be changed to automatic with server defaults.
Views

Views are what allow a BIND 10 server to offer different data to the same query for different clients. It consists of a name, an ACL for client selection and a set of zonecuts that are defined under that view.
Commands are:

♦configure view create view=vname acl=aclname [recursion=(yes|no)]
♦configure view modify view=vname acl=aclname recursion=(yes|no)]
♦configure view delete view=vname
The delete command will fail if there are any zones enabled under this view. If there are zones that are disabled, those zones will be deleted.
♦configure view list

♦configure view delete view=vname
The general list command will show all views currently defined. The specific list version shows the ACL and all enabled and disabled zonecuts for the view.
Recursive server controls

The recursive module of the BIND 10 server uses these commands to provide services to clients.
The basic command is:

♦configure recursive server (enable|disable) [ACL=acl]
Resource limits

Recursive servers can exhaust resource limits and cause capacity loss. To prevent this, there are limits that control the resources of recursive server: These are of the form

♦configure recursive limit [resource=rname [value=value]]

If the resource argument exists but the value is omitted, the current value is displayed. If the resource is omitted, all resource values are listed. If the value is either 0 or -1, this means that the resource is unlimited or limited to the server maximum.
Forwarders
The ability to forward requests to a different server without local processing is another capability that will be brought over from BIND 9.
♦configure recursive forwardlist [(iplist|namedacl)] [mode=(first|only)]

The forwardlist command sets the list of forwarders to use. If the command is issued with no arguments, it shows the current state of forwarding. The iplist is a tuple of server addresses to query. If the tuple is set to (null), the list is empty and the recursive server no longer attempts forwarding.
ACLs
Access control lists (ACLs) are used in many places within the BIND 10 server. In BIND 9, there are unnamed, location specific, ACLs for things like zone transfer access for a zone and the selection list for a view. There are also named ACLs that can be used where location specific ALCs would go.

The BIND 10 server will have similar ACL requirements but there are also likely other places and possibly with other capabilities. If one looks at DHCP, many other capabilities are also controlled by things that look similar to ACLs.

It is recommended that a more general approach to ACLs be taken by the command tool that can be used for functions beyond the simplest commands.
Not to be confused with roles

It is important to remember that server ACLS are for controlling the processing within the server and not related to user rights on the server or the command tool. In the command tool, the user rights are managed by the RBAC system. The user rights mechanisms of the server beyond login authentication have not been addressed at this point.
Matching for sources

One of the most important uses of sever ACLs is for permitting certain clients to do particular operations while preventing it for other clients. These lists currently allow single IP addresses and CIDR address ranges. There is no action associated with each access control entry (ACE), the match and default options for the list are defined by the context in which it is used. So the same list can permit things in one place and deny them in another.
Named ACLs as common

One of the important aspects of current BIND configuration structure is the ability to create and use named ACLs instead of local lists. This document takes the view that all ACLs are named in the server.

Another way to used a named ACL is to use it as a list of IP addresses for things like forwarding. In this case, all ACEs that are not IP addresses (v4 or v6) are ignored and all actions are ignored.
Synthesized ACL names

In places where there is a context specific unnamed ACL in BIND 9, this system will synthesize a name for that ACL and attach it by name. So if one has a view named “inside” that has an selection ACL, the synthesized name would be view-inside-selection. The context of the list would say that the default match operation is select view and the list default operation (when no ACEs match) is don’t select view.

Basic ACL commands

♦configure ACL create name=aname
♦configure ACL delete name=aname
There should be a reference count on named ACLs. If the named ACL is in use, the command should return an error.

To list lists all named ACLs:

♦configure ACL list

If the server contains a list of places where any ACL is used, the command tool would want to be able to display that list:
♦configure ACL use name=aname
To add an ACE to an ACL:

♦configure ACL aceadd name=aname [line=linenumber] [action=(enum)] match=data
If the line number is specified the entry is added before the line or it is added to the end if the line is greater than the length of the list or not mentioned. The action allows there to be actions specified with the ACE with the list of possible actions provided by the server. The current or reasonably expected current values are default and include, the later being able to pull one list into another.
To modify the ACE at a given line number:

♦configure ACL acemodify name=aname line=linenumber [action=(enum)] match=data
To delete the ACE at a given line number:

♦configure ACL acedelete name=aname line=linenumber
Richer ACL description

The list of addresses has been sufficient for current purposes of BIND but it is not sufficient for DHCP and other operations that can be expected to occur over time. DHCP allows for address ranges with arbitrary start and end addresses. Other requirements require mixed logic within a single list.

To address these issues, several additions have been made to the representation of ACLs. First there are line numbers of ACEs to allow ordering and modification of single ACEs with in an ACL. Second, the match data is arbitrary and is validated at the time it is used somewhere. There is no validity checking in the command tool or when the ACL is stored on the server. Third, there is the option of adding new actions for things that match the ACE transparently to the command tool. The tool retrieves the possible actions from the server to validate ACE commands. A short time cache is possible, in the order of minutes. If multiple servers are indicated by the serverset, the intersection of all server actions is presented (only the items that exist on all servers.)
TSIG and trusted keys

[need to understand the BIND 10 model these to know whether the BIND 9 model is appropriate.]
Logging
The server logging specification in currently under development.
What goes where
Language

Examining logs

Triggering log events for testing

Statistics

It is not yet defined what control is needed for the server configuration control.
Module controls
Module controls is an area in which BIND 10 is unique. Because the server is composed of a number of cooperating modules, there need to be operational control over which modules are running.
What can be set
The things that can be set are which modules to run, which versions to select and any order dependency.

Commands are:

♦configure module list [module=mname] [details]

This will either list the modules or the versions of a specific module available on the server. The details argument gets information such as the author, compilation date, checksum, etc.

♦configure module run module=mname [version=version] [autorestart=(yes|no)]
This command adds a module to the run list of the server. The module is not started until a runtime command is issued. If version is omitted, the most recent version is run.
♦configure module depends module=mname precedent=mname2
This command is used to control the order of execution of modules on the server. The command means than mname2 must be running and initialized before mname can be started.

Finally, there needs to be a way to control module options. This command follows the form and logic of the server option command described above.
♦configure module option module=mname [optionname=(enum) [value=value]] […] [explain [detail]]

The module options exposed here should not be things that can be set by other high level commands.
Run time management

The next area of the server to be developed is the run time control section. This allows the command tool user to control execution and gather information on modules running as part of the system. At this point, it is assumed that statistics extraction and analysis is done outside the command tool. These functions are not intended to replace operating system level information about the server and its processes.
Start, stop, restart

These are the basic run time controls for the server. Because of the modular nature of the BIND 10 server, it is possible to control modules individually as well as the server as a whole. When operating on modules, it is also necessary to maintain dependencies between modules.

To start things:

♦runtime start [module=modulename [version=version]] [permitnoconf]
The command with no arguments starts the entire server with all modules defined in the module configuration. If the module argument is present, the module in question is started. If the module in question is not defined in the module configuration, an error is returned unless the permitnoconf argument is also included. If the module depends on other modules (see module configuration) the other modules will be started as well.

To stop things:

♦runtime stop [module=modulename] [force]

The meaning is similar to the start command. If there is a module argument and there are modules running that depend on the module that is trying to be stopped, an error is returned. If the force argument is present, the module and all dependent modules are stopped.
To restart things:

♦runtime restart [module=modulename [version=version]] [permitnoconf] [force]

This is a shorthand for a stop followed by a start and all discussions for both those commands apply.
Server triggers

Another control function is to trigger server functions to happen that would otherwise not happen or happen at a later time. The things available to be triggered vary with the modules running on the server. The unum and explain functions are similar to the server options command.
♦runtime trigger [triggertype=(enum) [value=data]] [explain [details]]
Configuration dump

Given that there is not a file that the server starts with, it then means we need to be able to extract the overall configuration of the server via the command tool. This dump needs to be able to be seen in a number of different ways for most understanding. There are two forms that will be necessary, one as text that can be easily read by the user and a second as the set of commands to the command tool to build the needed configuration. In either case, the higher level configuration descriptions will be used if the configuration element can be controlled in that form. It is important to distinguish elements that have been set to the default and what that value is for the user readable version and that commands not be created for default settings.
A third form of dump could also be considered where everything is shown in the low level element form. It may be faster to dump and load the lower level elements than translating everything to the higher level form and back.
♦Runtime configdump [output=filespec] [command]
Current status

This section discusses how to allow a command tool user to get information about the running system. The key is to take whatever information that is available and show it in the context of the BIND 10 entities.
Modules
The first level of understanding of the operating status of the server is to understand what is happening at the module level. One command with various options does this.
♦runtime modulestatus [module=mname] [detail] [sysinfo]
The command with no arguments will list the names of the modules currently running and the number of instances if more than 1. If the detail argument is added, the module version, author and build info is added. If there are instances, then detail will expend out each instance by name. If the sysinfo argument is added, the accumulated run time for the sum of all instances for each module is shown. If both detail and sysinfo are present, the easily retrievable system information for each instance is displayed.
The sysinfo detailed information is assumed to be O/S dependent and parsing the output is not a specific goal. It is assumed that this information will be retrieved by separate means.
Resources
Many modules have resources that they maintain and limits that control those resources. This command is used to display the current resource and the limits they are controlled by. In some cases (views with recursive caches) there can be multiple instances of a resource. In those cases, it is required that a meaningful name or number be associated with them (the view name with the cache.)
♦runtime resources [resource=rname][…]

For resources that have limits, the limit is displayed following the value and the percentage of use following that.
Configuration testing

Configuration testing is a requested capability for BIND 10. It is also a challenge in that there is not a single file that contains all configuration elements as in BIND 9. It is also a challenge because the configuration depends on the data, which is now in the server datastore.

The best solution for this would be to clone the running server and start an instance where all network connections been closed or changed to not conflict. Then the command tool would connect, add the configuration changes and feed queries in to test the changes.
This will require a careful examination of the server code to understand how to create a safe standalone instance of the server to test the commands on and a plan for how to copy and modify the configuration from the working server to the standalone instance.
The command will need to specify the server to base the standalone server on and will need to create a single server instance that is then connected to. There also needs to be a way to destroy a standalone instance.
Comparison to rndc

	rndc
	Command tool runtime controls

	Connects to one server at a time
	Can run commands on multiple servers at once

	Connects with shared key
	User login with authentication

	Start, stop, restart
	Start, stop, restart for server and modules, version selection

	Reload zone
	Not applicable, datastore update is self managed

	Reconfig
	Not applicable, incremental changes made

	Refresh and most other commands
	runtime trigger

	Freeze,thaw
	Unclear, could use trigger

	status
	Modulestatus

Scripting

Why scripting

Ability to analyze state of server

Ability to analyze across multiple servers

Ability to use state to control actions
Create synthesized DNS data
How people could use scripting

Validation of delegation correctness

Injecting external data into the server datastore

Validating and regression testing server configurations

Scripting capability

Assuming python as with server

Ability to issue commands and parse responses

Scripting API

Connection

Logging

Server status

Data examination and control

Config examination and control

Forcing events and observing results

Help

User types
Frequent users

Infrequent users

Simple command users

Debugging

Help needs

Controlled level of help

Help mode

Commands and command hierarchy

Other information and guidance

Command help with “?”

Command tool settings

Extensibility

Support for non-ISC modules
Configuration changes to non-ISC modules

Data manipulation and display for non-ISC modules

Command, logging and events for non-ISC modules

API

Addition of routines to support server side functions

Addition of routines to support tool side operations

Overloading routines for new data types

Script libraries

Ability to load and unload script routine sets easily

Allows value add for vendors

Front ends

Easily add GUIs to work with APIs

Integration with existing OS tool structures like webtools

Tool metadata models

Add new data representation and transformations

Replace ISC data model completely

Support for other transports and control models

IETF draft for DNS management protocol

Assumes a module on the server

Appendix A: command hierarchy
♦access ad serverset=sname add/delete

♦access ad serverset list

♦access ad serverset=sname server FQDN|IP add/delete

♦access ad serverset=sname server list
♦access connect serverset=sname
♦access disconnect serverset=sname

♦access connect single FQDN|IP [name sname]

♦access disconnect single FQDN|IP|sname
♦access default sname
♦access [serverset=sname] user=sname add/delete

♦access [serverset=sname] user list

♦access [serverset=sname] user=sname password=password
♦configure ACL create name=aname
♦configure ACL delete name=aname
♦configure ACL list

♦configure ACL use name=aname
♦configure ACL aceadd name=aname [line=linenumber] [action=(enum)] match=data
♦configure ACL acemodify name=aname line=linenumber [action=(enum)] match=data
♦configure ACL acedelete name=aname line=linenumber
♦configure element create module=modname element=elementname [(subelement=elementname, subvalue=value) …] value=value
♦configure element delete module=modname element=elementname [(subelement=elementname, subvalue=value) …]

♦configure element modify module=modname element=elementname [(subelement=elementname, subvalue=value)…] value=value
♦configure element list module=modname [element=elementname [(subelement=elementname, subvalue=value) …]] [select=regexp]
♦configure module list [module=mname] [details]

♦configure module run module=mname [version=version] [autorestart=(yes|no)]

♦configure module depends module=mname precedent=mname2
♦configure module option module=mname [optionname=(enum) [value=value]] […] [explain [detail]]

♦configure recursive server (enable|disable) [ACL=acl]
♦configure recursive limit [resource=rname [value=value]]

♦configure recursive forwardlist [(iplist|namedacl)] [mode=(first|only)]

♦configure server query listen=listenspec
♦configure server command listen=listenspec
♦configure server message listen=listenspec
♦configure server datastore driver=drivername access=URL [schemamap=filespec] [user=dbname password=dbpassword]

♦configure server option [optionname=(enum) [value=value]] […] [explain [detail]]

♦configure view create view=vname acl=aclname [recursion=(yes|no)]
♦configure view modify view=vname acl=aclname recursion=(yes|no)]
♦configure view delete view=vname
♦configure view list

♦configure view delete view=vname
♦configure zonecut enable zonecut=zname zonetype=(master[=(IPaddr|FQDN)]]|stub|forward=(IPlist|namedacl)|hint|delegation)

♦configure zonecut option zonecut=zname [optionname=(enum) [value=value]] […] [explain [detail]]
♦configure zonecut disable zonecut=zname
♦configure zonecut delete zonecut=zname
♦configure zonecut autoserial zonecut=zname (manual|automatic) [interval=nnn]

♦configure zonecut dynamicdns zonecut=zname (enable|disable)

♦datastore dumpzone top=FQDN [levels=n] [bottom=FQDN…] directory=filespec [form=printfstring]
♦datastore match [top=FQDN] [levels=n] [bottom=FQDN…] type=(name|number|*)[…] search=regexp [matchop=value…] [sort=(name|type|data)] [reverse] [tags]

♦datastore origin=FQDN
♦datastore rrdata create name=name [class=class] type=type data
♦datastore rrdata delete name=name [class=class] type=type (data|*)
♦datastore rrdata modify name=name [class=class] type=type olddata newdata
♦datastore security key create/delete/modify name=name data=data
♦datastore security signature create/delete/modify name=name data=data
♦datastore security nsec create/delete/modify name=name data=data
♦datastore security nsec3 create/delete/modify name=name data=data
♦datastore navigation SOA create zonecut=zname value=datalist
♦datastore navigation SOA delete zonecut=zname

♦datastore navigation SOA modify zonecut=zname field=fieldname value=data
♦datastore navigation nameserver create/delete zonecut=zname server=nsname
♦datastore navigation nameserver modify zonecut=zname oldserver=nsname newserver=nsname
♦datastore navigation gluens create/delete zonecut=parentname server=nsname
♦datastore navigation glueaddr create/delete zonecut=parentname name=FQDN type=(A|AAAA) address=address
♦digcc
♦rbac login=uname password=password (password should be prompted for is not on the command)

♦rbac logout

♦rbac role add/delete rname
♦rbac role list

♦rbac role=rname access add/delete/modify element CRUD

♦rbac role=rname access list
♦rbac user=uname add/delete

♦rbac user list
♦rbac user=uname role=rname add/delete

♦rbac user=uname role list

♦rbac user=uname password=password
♦rbac user uname map [serverset=sname][password=password]

Appendix B: development roadmap
Appendix C: a tool data model

Introduction

General structure

Translations

27
Command Tool PRD, Jerry Scharf
12/6/2010

